آخر الأخبار
الاتحاد الحلبي يبحث عن فوز في أول المشوارسوريا تواجه ماليزيا واندونيسيا ودياًبطولة تنشيطية للكاراتيه للفئات العمرية الصغيرة في نادي القرداحة باللاذقيةبين الطموح والآمال والآلام والاتحاد الحلبي هو الآلمأمل الجودو الحلبي يبدأ أولى خطواتهالجلاء بطلاً لصغار السلة الحلبية 2014اجتماع موسع لمدرسي ومدرسات التربية الرياضية بحلبسباحة مدارس حلب للجنسينكرة رجال الحرية والدورة السداسية المؤهلة للدرجة الأولىالقادسية يتوج بلقب كأس الاتحاد الآسيوي 2014

نادي الإتحاد الحلبي السوري


لمن تهجم على الاحصاء في علم النفس ..

الأهــلــي الحـلبـي كــافــيــه

إنشاء موضوع جديد  رد
 
أدوات الموضوعطرق مشاهدة الموضوع

نادي الإتحاد الحلبي السوري

كُتب : [ 29-11-2007 - 03:06 ]
رقم المشاركة : ( 1 )
الصورة الرمزية شمس الاصيل
 
شمس الاصيل
أهلاوي مر

شمس الاصيل غير متواجد حالياً

       
رقم العضوية : 416
تاريخ التسجيل : Nov 2007
مكان الإقامة : Germany
عدد المشاركات : 882
قوة التقييم : شمس الاصيل has a spectacular aura aboutشمس الاصيل has a spectacular aura about
افتراضي لمن تهجم على الاحصاء في علم النفس ..

November 29th, 2007

Statistics

From Wikipedia, the free encyclopedia


Jump to: Cant See Links, Cant See Links
This article is about the field of statistics. For statistics about Cant See Links, see Cant See Links. For other uses, see Cant See Links.

A graph of a Cant See Links showing statistics used in Cant See Links assessment. The scales include standard deviations, cumulative percentages, percentile *****alents, Z-scores, T-scores, standard nines, and percentages in standard nines.


Statistics is a Cant See Links pertaining to the collection, analysis, interpretation or explanation, and presentation of Cant See Links. It is applicable to a wide variety of Cant See Links, from the physical and social Cant See Links to the Cant See Links. Statistics are also used for making informed decisions.
Statistical methods can be used to summarize or describe a collection of data; this is called Cant See Links. In addition, patterns in the data may be Cant See Links in a way that accounts for Cant See Links and uncertainty in the observations, and then used to draw inferences about the process or population being studied; this is called Cant See Links. Both de******ive and inferential statistics comprise applied statistics. There is also a discipline called Cant See Links, which is concerned with the theoretical basis of the subject.
The idea that statistics branched off from Cant See Links is a widely held misconception. Some place an undue emphasis on the relationship, but the two disciplines are very different.

*******s

[Cant See Links]
  • <LI class=toclevel-1>Cant See Links
    • <LI class=toclevel-2>Cant See Links<LI class=toclevel-2>Cant See Links<LI class=toclevel-2>Cant See Links
    • Cant See Links
    <LI class=toclevel-1>Cant See Links<LI class=toclevel-1>Cant See Links
    • <LI class=toclevel-2>Cant See Links<LI class=toclevel-2>Cant See Links
    • Cant See Links
    <LI class=toclevel-1>Cant See Links<LI class=toclevel-1>Cant See Links<LI class=toclevel-1>Cant See Links<LI class=toclevel-1>Cant See Links<LI class=toclevel-1>Cant See Links<LI class=toclevel-1>Cant See Links<LI class=toclevel-1>Cant See Links
    • <LI class=toclevel-2>Cant See Links
    • Cant See Links
    • Cant See Links
[Cant See Links] History

[Cant See Links] Etymology



Look up Cant See Links in
Cant See Links, the free dictionary.


The word statistics is also the plural of Cant See Links (singular), which refers to the result of applying a statistical algorithm to a set of data, as in Cant See Links, Cant See Links, etc. Statistics encompasses the collection, analysis and interpretation of Cant See Links. Statistics originated as a study of the techniques for collecting and interpreting information. The term was first used in the middle of the 18th century by Cant See Links, a professor at Gottingen, to explain the physical, moral, and political condition of states.
It is ultimately derived from the Cant See Links term statisticum collegium ("council of state") and the Cant See Links word statista ("Cant See Links" or "Cant See Links"). The Cant See Links Statistik, first introduced by Cant See Links (1749), originally designated the analysis of Cant See Links about the Cant See Links, signifying the "science of state" (then called political arithmetic in English). It acquired the meaning of the collection and classification of data generally in the early Cant See Links. It was introduced into English by Cant See Links.
Thus, the original principal purpose of Statistik was data to be used by governmental and (often centralized) administrative bodies. The collection of data about states and localities continues, largely through Cant See Links. In particular, Cant See Links provide regular information about the Cant See Links.
[Cant See Links] Origins in probability

The mathematical methods of statistics emerged from Cant See Links, which can be dated to the correspondence of Cant See Links and Cant See Links (1654). Cant See Links (1657) gave the earliest known scientific treatment of the subject. Cant See Links's Cant See Links (posthumous, 1713) and Cant See Links's Cant See Links (1718) treated the subject as a branch of mathematics.Cant See Links In the modern era, the work of Cant See Links has been instrumental in formulating the fundamental model of Probability Theory, which is used throughout statistics.
The Cant See Links may be traced back to Cant See Links' Opera Miscellanea (posthumous, 1722), but a memoir prepared by Cant See Links in 1755 (printed 1756) first applied the theory to the discussion of errors of observation. The reprint (1757) of this memoir lays down the Cant See Links that positive and negative errors are equally probable, and that there are certain assignable limits within which all errors may be supposed to fall; continuous errors are discussed and a probability curve is given.
Cant See Links (1774) made the first attempt to deduce a rule for the combination of observations from the principles of the theory of probabilities. He represented the law of probability of errors by a curve. He deduced a formula for the mean of three observations. He also gave (1781) a formula for the law of facility of error (a term due to Cant See Links, 1774), but one which led to unmanageable equations. Cant See Links (1778) introduced the principle of the maximum product of the probabilities of a system of concurrent errors.
The Cant See Links, which was used to minimize errors in data Cant See Links, was published independently by Cant See Links (1805), Cant See Links (1808), and Cant See Links (1809). Gauss had used the method in his famous 1801 prediction of the ******** of the Cant See LinksCant See Links. Further proofs were given by Laplace (1810, 1812), Gauss (1823), Cant See Links (1825, 1826), Hagen (1837), Cant See Links (1838), Cant See Links (1844, 1856), Cant See Links (1850), and Cant See Links (1870).
Other contributors were Ellis (1844), Cant See Links (1864), Cant See Links (1872), and Cant See Links (1875). Peters's (1856) formula for r, the probable error of a single observation, is well known.
In the Cant See Links authors on the general theory included Laplace, Cant See Links (1816), Littrow (1833), Cant See Links (1860), Helmert (1872), Cant See Links (1873), Liagre, Didion, and Cant See Links. Cant See Links and Cant See Links improved the exposition of the theory.
Cant See Links (1796-1874), another important founder of statistics, introduced the notion of the "average man" (l'homme moyen) as a means of understanding complex social phenomena such as Cant See Links, Cant See Links, or Cant See Links.
[Cant See Links] Statistics today

During the 20th century, the creation of precise instruments for Cant See Links concerns (Cant See Links, Cant See Links, etc.) and economic and social purposes (Cant See Links rate, Cant See Links, etc.) necessitated substantial advances in statistical practices: the Western Cant See Links developed after Cant See Links had to possess specific knowledge of the "population".
Today the use of statistics has broadened far beyond its origins as a service to a state or government. Individuals and organizations use statistics to understand data and make informed decisions throughout the natural and social sciences, medicine, business, and other areas.
Statistics is generally regarded not as a subfield of mathematics but rather as a distinct, albeit allied, field. Many Cant See Links maintain separate mathematics and statistics Cant See Links. Statistics is also taught in departments as diverse as Cant See Links, Cant See Links, and Cant See Links.
[Cant See Links] Important contributors to statistics

See also: Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links ("Student")
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
  • Cant See Links
[Cant See Links] Conceptual overview

In applying statistics to a scientific, industrial, or societal problem, one begins with a process or Cant See Links to be studied. This might be a population of people in a country, of crystal grains in a rock, or of goods manufactured by a particular factory during a given period. It may instead be a process observed at various times; data collected about this kind of "population" constitute what is called a Cant See Links.
For practical reasons, rather than compiling data about an entire population, one usually studies a chosen subset of the population, called a Cant See Links. Data are collected about the sample in an observational or Cant See Links setting. The data are then subjected to statistical analysis, which serves two related purposes: de******ion and inference.
  • Cant See Links can be used to summarize the data, either numerically or graphically, to describe the sample. Basic examples of numerical de******ors include the Cant See Links and Cant See Links. Graphical summarizations include various kinds of charts and graphs.
  • Cant See Links is used to model patterns in the data, accounting for randomness and drawing inferences about the larger population. These inferences may take the form of answers to yes/no questions (Cant See Links), estimates of numerical characteristics (Cant See Links), de******ions of association (Cant See Links), or modeling of relationships (Cant See Links). Other Cant See Links techniques include Cant See Links, Cant See Links, and Cant See Links.
The concept of correlation is particularly noteworthy. Statistical analysis of a Cant See Links may reveal that two variables (that is, two properties of the population under consideration) tend to vary together, as if they are connected. For example, a study of annual income and age of death among people might find that poor people tend to have shorter lives than affluent people. The two variables are said to be correlated. However, one cannot immediately infer the existence of a causal relationship between the two variables; see Cant See Links. The correlated phenomena could be caused by a third, previously unconsidered phenomenon, called a Cant See Links.
If the sample is representative of the population, then inferences and conclusions made from the sample can be extended to the population as a whole. A major problem lies in determining the extent to which the chosen sample is representative. Statistics offers methods to estimate and correct for randomness in the sample and in the data collection procedure, as well as methods for designing robust experiments in the first place; see Cant See Links.
The fundamental mathematical concept employed in understanding such randomness is Cant See Links. Cant See Links (also called Cant See Links) is the branch of Cant See Links that uses Cant See Links and Cant See Links to examine the theoretical basis of statistics.
The use of any statistical method is valid only when the system or population under consideration satisfies the basic mathematical assumptions of the method. Cant See Links can produce subtle but serious errors in de******ion and interpretation — subtle in that even experienced professionals sometimes make such errors, and serious in that they may affect social policy, medical practice and the reliability of structures such as bridges and nuclear power plants. Even when statistics is correctly applied, the results can be difficult to interpret for a non-expert. For example, the Cant See Links of a trend in the data — which measures the extent to which the trend could be caused by random variation in the sample — may not agree with one's intuitive sense of its significance. The set of basic statistical skills (and skepticism) needed by people to deal with information in their everyday lives is referred to as Cant See Links.
[Cant See Links] Statistical methods

[Cant See Links] Experimental and observational studies

A common goal for a statistical research project is to investigate causality, and in particular to draw a conclusion on the effect of changes in the values of predictors or Cant See Links on response or Cant See Links. There are two major types of causal statistical studies, experimental studies and observational studies. In both types of studies, the effect of differences of an independent variable (or variables) on the behavior of the dependent variable are observed. The difference between the two types is in how the study is actually conducted. Each can be very effective.
An experimental study involves taking measurements of the system under study, manipulating the system, and then taking additional measurements using the same procedure to determine if the manipulation may have modified the values of the measurements. In contrast, an observational study does not involve experimental manipulation. Instead data are gathered and correlations between predictors and the response are investigated.
An example of an experimental study is the famous Cant See Links which attempted to test changes to the working environment at the Hawthorne plant of the Western Electric Company. The researchers were interested in whether increased illumination would increase the productivity of the Cant See Links workers. The researchers first measured productivity in the plant then modified the illumination in an area of the plant to see if changes in illumination would affect productivity. As it turns out, productivity improved under all the experimental conditions (see Cant See Links). However, the study is today heavily criticized for errors in experimental procedures, specifically the lack of a Cant See Links and Cant See Links.
An example of an observational study is a study which explores the correlation between smoking and lung cancer. This type of study typically uses a survey to collect observations about the area of interest and then perform statistical analysis. In this case, the researchers would collect observations of both smokers and non-smokers, perhaps through a Cant See Links, and then look at the number of cases of lung cancer in each group.
The basic steps for an experiment are to:
  1. plan the research including determining information sources, research subject selection, and Cant See Links considerations for the proposed research and method,
  2. Cant See Links concentrating on the system model and the interaction of independent and dependent variables,
  3. Cant See Links to feature their commonality by suppressing details (Cant See Links),
  4. reach consensus about what Cant See Links about the world we observe (Cant See Links),
  5. ******** and present the results of the study.
[Cant See Links] Levels of measurement

See: Cant See Links
There are four types of measurements or measurement scales used in statistics. The four types or Cant See Links (nominal, ordinal, interval, and ratio) have different degrees of usefulness in statistical Cant See Links. Ratio measurements, where both a zero value and distances between different measurements are defined, provide the greatest flexibility in statistical methods that can be used for analysing the data. Interval measurements have meaningful distances between measurements but no meaningful zero value (such as IQ measurements or temperature measurements in Cant See Links). Ordinal measurements have imprecise differences between consecutive values but a meaningful order to those values. Nominal measurements have no meaningful rank order among values.
Variables conforming only to nominal or ordinal measurements are sometimes called together categorical variables since they cannot reasonably be numerically measured whereas ratio and interval measurements are grouped together as quantitative or Cant See Links due to their numerical nature.

والمزيد..Cant See Links

Cant See Links

وارجو من الاخوة ترجمت النص لانو مالي فاضي ..

ويلي تهجم على اهمية الاحصاء في علم النفس والذي هو علم قائم بحد ذاته ويسمى علم النفس الاحصائي تكفيه معلومة واحده بان هذا العالم كشف ربط لكثير من العوامل بلامراض مثل سرطان الرئة والتدخين,السكري والشبكية والخ
وهو قام بدراسة الظواهر والتغيرات النفسية وقام باعطائها تفسيرا ..

بعد كل ذلك نشاهد بعض الناس ويلي ما بيعرفو الحمسة من الطمسه يجادل !!

للمزيد من المعلومات يرجى مراجعة كتب مثيرة بعنوان الاحصاء في علم النفس ..وقراءة علم النفس البيئي لعلماء نفس كبار امثال فرانكشتاين و Freedman

يلي ربطو العوامل النفسية المتغيرة للانسان بلطبيعه وطالعو نتائج لاحصائيات استمرو في عملها سنين ويأتي بأخر زمانهم اشخاص ويطعنون بلنتائج !! ؟



الموضوع الأصلي: Cant See Links || الكاتب: Cant See Links || المصدر: Cant See Links
Cant See Links

كلمات البحث

منتدى نادي الاتحاد الحلبي, منتدى عشاق حلب الاهلي, موقع نادي الاتحاد السوري, موقع حلب سبورت, موقع حلب الرياضي, المطبخ الحلبي, أكلات حلبية, المطبخ الشامي, المطبخ السوري, حلب, مدينة حلب, محافظة حلب, صور حلب, حلب الشهباء, شوارع حلب, حارات حلب, حلب القديمة, الاندية الحلبية, جماهير نادي الاتحاد الحلبي, اتحاد حلب, أهلي حلب, حلب الاهليForum Club Ittihad of Aleppo, Aleppo, Al-Ahli fans forum, the site of the Syrian Union Club, site of Aleppo Sport, the sports site Aleppo, Al Halabi Kitchen, Food Aleppo, kitchen Shami, Syrian cuisine, Aleppo, Aleppo, Aleppo, Aleppo Photos, Aleppo, streets Aleppo, Aleppo lanes, old Aleppo, Aleppo clubs, fans club Ittihad of Aleppo, Aleppo Union, native Aleppo, Aleppo, Al-Ahli



glk ji[l ugn hghpwhx td ugl hgkts >>

رد مع اقتباس

نادي الإتحاد الحلبي السوري

 
كُتب : [ 29-11-2007 - 03:16 ]
 رقم المشاركة : ( 2 )
الاهلاوي سامي
أهلاوي للموت
الصورة الرمزية الاهلاوي سامي
رقم العضوية : 34
تاريخ التسجيل : Sep 2007
مكان الإقامة : الامارات
عدد المشاركات : 8,362
قوة التقييم : الاهلاوي سامي is a name known to allالاهلاوي سامي is a name known to allالاهلاوي سامي is a name known to allالاهلاوي سامي is a name known to allالاهلاوي سامي is a name known to allالاهلاوي سامي is a name known to all

الاهلاوي سامي غير متواجد حالياً

   

افتراضي

هههههههههههههههههههه حلوة هي ما بيفهم الخمسة من الطمسة ..

اول شي محدا تهجم على علم النفس وكلنا قلنا انه علم مهم جدا

ولكن تهجمنا على ما ينسبونه الى علم النفس من الخرافات والامور التافهة

مثل ان تعرف شخص من خلال نوع جراباتو او من خلال الاكلة اللي بيحبا ... الخ

واذا حدا معتبر هذا من علم النفس ... فما عليه الا ان يصغي الى الواقع ..(ويعمل احصائية واقعية )

ويشغل مخوووووو (اهم شي)

كم الف شخص بيلبسو نفس الجرابات او الحذاء مثلا...

ومع هيك كل واحد الو تصرفاته ونفسيته المختلفة عن الاخر تماما ....

ومثلا لما ينزل موضوع انو ترتيبك بين اخواتك يدل على شخصيتك ...(طبعا هادا عالم وبيعرف الخمسة من الطمسة)

ولكن نسي يطلع على نفسه وعلى جيرانه اقل شي... فمثلا الاخ الاكبر من كل عائلة او الاصغر او الاوسط (يختلف كليا عن الاخر

ممكن تلاقي الاخ الكبير بهي العائلة رجل عاقل ورزين وفيه كل الصفات الجيدة

وترى الاخ الاكبر في العائلة الاخرى عنده سلوك اجرامي وكذب وخداع وحب التملك .. الخ

فيا حبايبي الله ميزنا عن باقي المخلوقات بالعقل (فهل نلغي تفكيرنا و عقلنا بمجرد انو قرانا موضوع انو هيك علم النفس بيقول..)

رد مع اقتباس

نادي الإتحاد الحلبي السوري

 
كُتب : [ 29-11-2007 - 03:21 ]
 رقم المشاركة : ( 3 )
شمس الاصيل
أهلاوي مر
الصورة الرمزية شمس الاصيل
رقم العضوية : 416
تاريخ التسجيل : Nov 2007
مكان الإقامة : Germany
عدد المشاركات : 882
قوة التقييم : شمس الاصيل has a spectacular aura aboutشمس الاصيل has a spectacular aura about

شمس الاصيل غير متواجد حالياً

   

افتراضي

The term was first used in the middle of the 18th century by Cant See Links, a professor at Gottingen, to explain the physical, moral, and political condition of states

Statistics is also taught in departments as diverse as Cant See Links, Cant See Links, and Cant See Links

هذا ما بقولوه العلماء وذكرته لانه الاهم ..

الترجمة ..

البروفسور اشن فال بروفسور في جامعة غوتنجن وجد الصلة في اهمية دراسة المعلومات الاحصائية كونها المفسر للحالات الفيزيائية والادبية والسياسية ..

الفقرة التانية

الاحصاء يدرس اقسام العلم النفسي والتربية والصحة العامة ..

بهتقد الفكرة لازم تكون وصلت ..

رد مع اقتباس

نادي الإتحاد الحلبي السوري

 
كُتب : [ 29-11-2007 - 03:27 ]
 رقم المشاركة : ( 4 )
شمس الاصيل
أهلاوي مر
الصورة الرمزية شمس الاصيل
رقم العضوية : 416
تاريخ التسجيل : Nov 2007
مكان الإقامة : Germany
عدد المشاركات : 882
قوة التقييم : شمس الاصيل has a spectacular aura aboutشمس الاصيل has a spectacular aura about

شمس الاصيل غير متواجد حالياً

   

افتراضي

نتائح الاحصاء ما ضروري تجي مطابقة الك وفينك ببساطة ما تأمن فيها بس وقت شخص بيفرغ من وقته سنتين من اجل فكرة معينة ما فينك لا انت ولا مليون واحد متلك انو ينكرها ..انت حر فكر اكيد ما حدا قال لاتشغل مخك واكيد مو قرأن منزل من السماء ..بس هي شرح لشريحة كبيرة منالناس انو هنن هيك اذا ماكنت انت هيك مالك شاذ او خالفت الاوامر ولكن لاتتهجم ..وانت لهلق ما بعرف اذا عندك اطلاع بسيط عن علم الاحصاء فلذلك رح انهي النقاش معك لبين ما تقرأ يلي بعتلك ياه بلروابط ...

رد مع اقتباس

نادي الإتحاد الحلبي السوري

 
كُتب : [ 29-11-2007 - 03:38 ]
 رقم المشاركة : ( 5 )
الاهلاوي سامي
أهلاوي للموت
الصورة الرمزية الاهلاوي سامي
رقم العضوية : 34
تاريخ التسجيل : Sep 2007
مكان الإقامة : الامارات
عدد المشاركات : 8,362
قوة التقييم : الاهلاوي سامي is a name known to allالاهلاوي سامي is a name known to allالاهلاوي سامي is a name known to allالاهلاوي سامي is a name known to allالاهلاوي سامي is a name known to allالاهلاوي سامي is a name known to all

الاهلاوي سامي غير متواجد حالياً

   

افتراضي

هههههههههههههههههههههههههه برجع بقلك شيلك من الروابط ومن كل شي

ودروس الناس المحيطة فيك ... خود اي احصائية ... مثلا (ترتيب الاخوة )الموضوع اللي نزلتو انت

اعمل دراسة على الف عائلة ورح تلاقي عندك الجواب .. وكم واحد من الالف ممكن يشبهو بعض...

فاذا برايك انو اللي ما بينطبق عليه الاحصاء بيكون شاذ ... فمعناها مجتمعنا كله شواذ ..

وانا كمان ما كتير حابب فوت بهيك نقاشات ..

لانو عندي يقين ان الله خلق النفس البشرية وفيها الكثير من التقلبات وان كل نفس تختلف عن الاخرى

وان لون الشحاط او نوع القميص اللي بيلبسه الانسان عمره ما رح يكون مقياس لنتعرف على باطن الشخص ونوعية افكاره ..

رد مع اقتباس
رد

مواقع النشر

لمن تهجم على الاحصاء في علم النفس ..



الذين يشاهدون محتوى الموضوع الآن : 1 ( الأعضاء 0 والزوار 1)
 
أدوات الموضوع
طرق مشاهدة الموضوع

تعليمات المشاركة
لا تستطيع إضافة مواضيع جديدة
تستطيع الرد على المواضيع
لا تستطيع إرفاق ملفات
لا تستطيع تعديل مشاركاتك

BB code is متاحة
كود [IMG] متاحة
كود HTML معطلة


RSS RSS 2.0 XML MAP HTML
حلب الأن 07:19